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Second-order mean fields of motion and density are calculated for the two- 
dimensional problem of an internal gravity wave packet (the waves are pre- 
dominantly of a single frequency o and wavenumber I c )  propagating as a wave- 
guide mode in an inviscid, diffusionless Boussinesq fluid of constant buoyancy 
frequency N ,  confined between horizontal boundaries. (The same mathematical 
analysis applies to the formally identical problem for inertia waves in a homo- 
geneous rotating fluid.) 

To leading order the mean motions turn out to be zero outside the wave packet, 
which consequently possesses a well-defined fluid impulse 9. This is directed 
horizontally, and is given in magnitude and sense by 

2c,(c - cg) ( c  + 2Cg) 

c3 - 4c; 
Y = a A ;  a =  

Here A is the so-called ‘wave momentum ’, defined as wave energy divided by 
horizontal phase velocity c = w/k ,  and cg = c ( N 2  - 0 2 ) / N 2 ,  the group velocity. 

If the wave packet is supposed generated by a horizontally towed obstacle, 
A appears as the total fluid impulse, but of this a portion A-9 in general 
propagates independently away from the wave packet in the form of long waves. 
When the wave packet itself is totally reflected by a vertical barrier immersed in 
the fluid, the time-integrated horizontal force on the barrier equals 2 9  (and 
not 2 4  as might have been expected from a naive analogy with the radiation 
pressure of electromagnetic waves.) 

1. Introduction 
The suggestion that waves in fluids should ‘possess’ a well-defined amount 

of momentum, like photons, can be traced back to Poynting (1905) and earlier. 
That this analogy with photons, taken literally, cannot be generally applicable 
to waves in material media-in contrast to the usually valid idea of a radiation 
stress whereby waves bring about a transfer of momentum-has been clearly 
pointed out by Brillouin (1925, 1964). Nevertheless the photon analogy tends t o  
persist in the fluid dynamical literature. A reason seems to be that it can lead 
t o  correct or partly correct conclusions in certain problems, such as those con- 
sideredby Bretherton (1969), Holton (1970), Lindzen (1971), andMatsuno (1971); 
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but see Hasselmami (1971) for discussion of an oceanographically important 
problem (concerning deep-water surface gravity waves) in which a recent applica- 
tion of the photon analogy led to a completely incorrect conclusion. 

The purpose of this note is to record an example which ( a )  complements those 
considered by Bretherton (1969), and (b) further illustrates the way in which the 
photon analogy can sometimes appear valid and at  the same time mislead. The 
results are not new in principle, since similar results hold for surface gravity 
waves in water of finite depth and can be found from the analysis of Longuet- 
Higgins & Stewart (1962). But the present example is mathematically and physic- 
ally simpler. 

Unlike surface gravity waves, the internal waves in the present example always 
possess zero momentum, at  the level of approximation considered, but a wave 
packet of wavenumber k turns out to have a definite fluid impulse 9. The way 
in which the*value of 9 depends on k,  however, is very different from what might 
be expected from an analogy to photons. Such an analogy might, for example, 
lead one to expect that an immersed obstacle reflecting a wave packet incident 
from the left would feel a force toward the right; but in fact the force can equally 
well be toward the left (33 .2) .  Furthermore a wave train, involving a significant 
spread of wavenumbers, does not appear to have a well-defined impulse at  all, 
let alone that impulse which would be obtained by regarding the wave train as a 
superposition of wave packets and summing the corresponding values of 9.7 

2. Analysis 
2.1. Equations, momentum, and impulse 

Consider two-dimensional incompressible flow, in which all fields depend upon 
the Cartesian co-ordinates x and z only, and satisfy 

Ut + u . vu = - V(p/p) + 20, (14  

v . u  = 0, ( l b )  

o,+u.ve+wW = o ( l c )  
[u = (zc, 0, w); v = (a/ax, O,a/az) ] .  

2 is a unit vector in the z-direction. These equations represent either a Boussinesq, 
stably stratified fluid under gravity (0, 0,  - g), with buoyancy frequency N ,  
here assumed constant, or a homogeneous fluid in a frame of reference rotating 
with constant angular velocity ( i N ,  0,O). In  the ‘stratified’ interpretation, which 
we use for descriptive purposes, u is the velocity and 8 the buoyancy accelera- 
tion. The latter is defined as - g times the fractional departure of the local den- 
sity from the basic density p( 1 - g-lN2z), where p is the (constant) mean density. 
In the ‘rotating ’ interpretation the velocity field is u + (0, - N-W,O) in our nota- 
tion. The presence of the horizontal boundaries is expressed by 

w = O  on z = O , H .  ( 1 4  

t For brevity the mathematical argument leading to this latter, negative conclusion will 
not be reproduced below. But the fact that the circumstances in which 4 exists are special 
will appear plausible from the analysis given below in $2.2. 
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A consequence of ( lb)  and (Id) is that the total horizontal momentum per 
unit y-distance is zero: 

for any disturbance of finite extent in x. (In the case of stratified fluid there is a 
further contribution to the momentum due to the effect of the density variations 
Ap on the fluid inertia per unit volume. But, in comparison with the impulse to 
be defined in (3)) this effect becomes arbitrarily small in the Boussinesq limit, 
Aplp -+ 0 with gAp/p finite. Alternatively, one could avoid discussion of the 
Boussinesq approximation by restricting attention to the ‘rotating ’ interpreta- 
tion.) 

The two-dimensional form of the horizontal component of fluid impulse can be 
defined, as 

m 

= p S J - z u , d z d x  = -.J -03 [ z u ] 5 i x ,  

provided that 

- W  

(Lamb 1932, $157; Batchelor 1967, equation (7.3.7) etc.; Benjamin 1970, $3). 
9 is a constant of the motion, under (1) ,  and can be shown to be equaI to minus the 
resultant horizontal component of a set of impulsive body forces which would 
instantaneously annul the motion, provided that these forces can be supposed to 
be sufficiently localized. For instance, it is sufficient that they act within a finite 
region of the x, z plane and that they, or their x-averaged horizontal component, 
tend to zero as the boundaries z = 0, H are approached. In  that case the motion 
necessarily satisfies (4). 

2.2. Calculation of 9jofor an isolated wave packet 

Let a be a small dimensionless parameter characterizing the amplitude of the 
waves, and p a small dimensionless parameter characterizing slowness of varia- 
tion of the complex amplitude relative to  the space and time scales H and N-1. 

Defining the slow variables 

consider the wave packet described by 

X =,ux, T =pt, 

u = a Re [ U ( X ,  T) eik(z-ct)] cos (mz), 

w = - am-l Re [(ikU+pUx) eik(z-ct)] sin (mx) (1 + O(p2)), 

p = apc Re [( U + i p k ~ - ~ U ~ )  eik(z-et)] cos (mz) (1 + O(p2)}, 

0 = - aiV(me)-lRe [( U - i p k ~ - W , )  eiqz+t)] sin (mz) (1 + O(p2)). 

(5a)  

(5b) 

( 5 4  

( 5 4  

Here 
K = (k2+m2)l > 0, 
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and suffixes denote partial differentiation. To satisfy the boundary conditions 
(1 d) ,  the vertical wavenumber 

m = nn /H,  

where n is a positive integer. The horizontal wavenumber k is taken to be con- 
stant. It can easily be verified that ( 5 )  satisfies the linearized form of equations 
(i), correct to the first two orders in p, provided f i s t  that the dispersion relation 
is satisfied, i.e. that 

C = ? N / K ,  (6) 

and second that the envelope U ( X ,  T) satisfies 

where the group velocity 

U may be complex-valued, 

cg = a(ck)/ak = Cm2p. 

and together with a sufficient number of its deri- 
vatives U,, U,, Uxx, etc., will be assumed to tend to zero as 1x1 becomes large 
compared to H ,  i.e. as 1x1 becomes large compared to , ~ - l H . t  

Kow if (5  a)  is substituted into (3) the oscillations tend to average out, the result 
for instance being O ( , U ~ ~ - ~ )  if it is assumed that 

Thus to obtain a contribution to 9' that does not vanish with p, we must go to 
second order in the amplitude a. We shall be interested only in the 'mean', or 
slowly varying, part U(X, x ,  T ) ,  p ( X ,  x ,  T ) ,  B(X,  z, T) of the order-a2 solution, 
where c) denotes the Eulerian averaging operation over a wave period 27r(ck)-'. 
This operation, by definition, is carried out at  a fixed point in space and obliterates 
all terms containing oscillatory factors such as e*2ik(z-ct). 

The Reynolds stress associated with the Eulerian averaging operation 0 is 
first calculated from ( 5  a)  and (5 b )  : 

- 
-pu2 = - 2cg(E/c) COS2(?nZ), 

-pZE - = pcgm-l(EX/c) cos (mz) sin (mx) (I + O(p)}, j (8) 
-pw2 = - 2 ~ , k % - ~ ( E / c )  sin 2 ( m ~ )  (1 + O(p)}, 

where 
E = $pa2 1 U I c/cg, (9) 

which is the leading contribution to the wave energy density defined as 
H _ _  
0 

+p(u2+w2+N--2@)dz. 

t It should be noted that variable amplitude is an essential ingredient in our problem. 
If  U were a constant then (5a ,  b, d )  would represent an exact solution of (1) for finite a (Long 
1955), sinca then u. V 8  = 0 and u . V u  is irrotational. For this solution, 9, as well as the 
Boussinesq momentum (2), is exactly zero when averaged over a wavelength (Benjamin 
1970, equation (4.17)) -in contrast to analogous problems in surface gravity waves. 
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Taking the divergence of the Reynolds stress to obtain -pu . Vu, and averaging 
(1 a) ,  we obtain the Eulerian-mean momentum equations, to leading order in a 
and p. The horizontal component yields 

( l o 4  

( l o b )  

pU,+w, = 0, (10c) 

PUT + px = -cgEx/C, 

- pe + ji5B = - 2cg k2m-1( E/c) sin (2mx). 

and the vertical component 

The mean continuity equation can be written 

implying that w = 5 x O(p), whence neglect of the vertical acceleration pWT 
in (10 b) .  The buoyancy J1ux p 3  is obtained from (5 a, b, d )  as 

cg[ - K2m-lE sin (2mx), 0,  pE,  sin2 (mz)] {I + O(p)}. 

Taking minus the divergence of this to obtain -pu . V8, we find from (1 c) that, 
to leading order in a and p, 

(104  
In virtue of the steadily translating character of the forcing terms on the right - 

this appears to be the most essential way in which the constancy of c, k and cg 
is used in the analysis - equations ( 1 0 )  have the following particular integral. 
It satisfies the boundary condition W = 0 at z = 0, H and, to leading order, van- 
ishes outside the wave packet: 

- 

p(B,  +p-1N2~) = cgk2m-1E,sin (2mz). 

pu. = - a(E/c) cos (2m.4, (1la) 

( l i b )  

( l l c )  

( 1 1 4  

ET = -c,E,{l+O(p)}; (12) 

- pw = pa(Zm)-l(E,/c) sin (2mx), 
- 
p = - aCg(E/C) cos (2mz) - cg E/c, 

p8 = PmE sin (2mz). 

We have used the fact that, from (7 )  and (9), E ( X ,  T) satisfies 

a and /3 are dimensionless quantities that depend upon cg/c only, in the manner 
shown graphically in figure 1, and defined by 

pz- 2(c - {CZ + 2CE}. 
c3 - 4c; 

In each of these expressions the second term within curly brackets can be traced 
back to the forcing term on the right of (lOd), minus divergence of buoyancy 
flux. The other, first, term within the curly brackets is entirely due to the con- 
tribution -(w2)* to the vertical force (the other contribution -p(uw), being 
negligible). The horizontal force, p times the right-hand side of (loa), is indepen- 
dent of z and is balanced entirely by the gradient of the second contribution t o  
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FIGURE 1. Dependence of a( = Y / d :  solid curvo) and /3 (broken curve) upon c& or upon 
wave aspect ratio [ k / m  I or dimensionless frequency [ w [ /hi. The shading is intended to show 
the correspondence with figure 4 of McIntyre (1972) (in which the abscissa is (c,/c)*, in the 
present notation). 

jj in ( l l c ) .  The relatively trivial role played by the horizontal force contrasts 
with the situation in Bretherton’s examples (1969, q.v.); the difference is due to  
our having postulated two-dimensional motion and horizontal boundaries. 

The corresponding Lagrangian-mean motion is not directly relevant to the 
calculation of 9; it is given in the appendix, together with some incidental re- 
marks concerning the relevance to this problem of the ‘radiation stress’ con- 
cept. 

C,,t) cos (m’x), etc., i.e. solutions of the homo- 
geneous counterparts of equations (lo), may be added to ( 11) .  But such contribu- 
tions propagate with the long-wave speeds 

‘Free’ solutions ii = func (x 

Cnr = N/m’ ( +  cg in general) [m’ = n‘r/H; n‘ = 1,2, ...I (14) 



Impulse of internal gravity wave packet 807 

and so will not in general remain associated with the wave packet.t Unlike the 
particular integral (1 l ) ,  such additional contributions depend upon the initial 
conditions, as will be illustrated shortly. 

Substituting ( l l a )  into (3), and noting that (4) is satisfied, we obtain the im- 
pulse of the wave packet correct to order a2p: 

P = - p  j [ x U ] f  dz 
-a 

= a d - 9 ,  say, 
where 

the total wave energy. 

3. Discussion 

3.1. Generation of the waves by an  obstacle towed at speed c 

If the wave packet is supposed generated by steadily towing an obstacle through 
the fluid, the time integral of the horizontal wave drag on the obstacle is Arather 
than 9, as can be seen from energy considerations. It can be shown (Ben- 
jamin 1970, $3)  that the total impulse is then d, and it is of interest to see how 
only 9 of this comes to be associated with the wave packet after generation (in 
contrast to what might tacitly be assumed on the basis of the photon analogy). 

A detailed analysis of this towing problem has been given elsewhere (McIntyre 
1972, referred to below as M), and solutions to corresponding problems for sur- 
face and interfacial gravity waves have been given by Benjamin (1970, $2)  
and Keady (1971). Here we confine ourselves to a brief summary of those results 
which are relevant to the present discussion. 

Figure 2(a )  schematically depicts a wave packet being generated by a two- 
dimensional body which was introduced into the fluid at  point A at t = 0, moving 
with constant speed c. In  the analysis it was assumed that the body is slender, 
and slides along one boundary. For simplicity we suppose that C, < c < C, 
(see (14)), so that only waves in thelowest mode n = I are continuallygenerated. 
Their presence is indicated in figure 2 by the disturbance to the central ‘dye 
streak’. 

At second order in a, there is also present a pair of ‘ columnar disturbances ’ 
with the modal structure n = 2. The fine streamlines represent schematically the 
associated contribution to the Eulerian-mean velocity field. The corresponding 
buoyancy field 8 is not depicted. The nonlinear terms forcing these disturbances 

t An exception is the singular case c,/c = 4 3  = 0.630, corresponding to violation of (14) 
for rn‘ = 2m. The wave aspect-ratio (k/rnl is then 0.766 and the dimensionless frequency 
lwl/N = 0.608. Reconsideration of (10) shows that then, as would be expected, the second- 
order mean motion grows resonantly as t .  [This effect is not described by the usual resonant- 
interaction theory (eg .  Martin et al. 1972), since it disappears if Ux is f o r d l y  set to zero.] 
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(o)  During generation 
c 

c 

et - - C2 1 re'- C2t - 
A 

(h)  After generation 

C p 1  - I 

FIGURE 2. (a)  Sketch (see text) showing generation of columnar disturbances during wave 
generation. The horizontal scale is compressed and the wave amplitude exaggerated. 
( b )  Situation after wave generation, showing part of the columnar disturbances separating 
off as independently propagating, long-wave transients. Here At = t -  tB. (In the drawing, 
0 < cg < C ,  < c < C,. This implies 2 < c/cg < 4-+, corresponding to the lightly shaded part 
of figure 1 and positive cc = $/d.) 

are significant mainly a t  the left-hand end of the developing wave packet (but 
not at the right-hand end during wave generation). The free ends of the two 
columnar disturbances propagate with the long-wave speed C,, so that a con- 
tinually lengthening region contains steady, horizontal, second-order velocities, 
given by the asymptotic formulae ( 4 . 1 9 ~ )  and (4.17a) of M. In  the present 
dimensional notation these formulae are equivalent to 

for the left- and right-hand columnar disturbances respectively. Here the sign 
convention is different from that in M, in order to make the positive senses for 
u and c the same. Note that (c - cg) and the two expressions within curly brackets 
are positive. From these formulae and the fact that 6" EH(c - cg) t we see that, 
asymptotically for large Nt ,  (4) is satisfied and the total impulse is &/c = d, as 
expected. 

When the towed body is removed, at point B and time t,, say, the total impulse 
becomes constant and the right-hand end of the wave packet begins to generate 
a second pair of columnar disturbances, the same in magnitude but opposite in 
sign to the first pair. After a while, canceilation takes place outside the wave 
packet where corresponding disturbances overlap, and we are left with the situa- 
tion shown in figure 2 (b ) .  The second-order mean motions have split into three 
parts, separated by distances that continually increase &s t .  The part that stays 
with the wave packet has impulse 3 (to an approximation valid for large Nt,). 
The two freely propagating parts, which ultimately occupy regions remote from 
the wave packet, must therefore have impulse d-9 approximately; and this 
conclusion may be checked directly from (16), or from (M4.20). 
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The amount of impulse d-3 contained in the second-order, freely propa- 
gating long waves depends on the particular way in which the waves were 
generated and cannot, like 9, be regarded as a property of the waves themselves. 
For instance, the waves could have been generated by a moving heat (buoyancy) 
source, in which case we should find long-wave transients containing impulse -9, 
since a trivial extension of Benjamin’s analysis (1970, $3) shows that the total 
impulse would then be zero. 

We reiterate that the clear separation of the total impulse into a part associ- 
ated with the waves plus an independent, transient part, seems to be a special 
result and does not generalize, for instance, to the case where k and c are allowed 
to be functions of X and T .  It then appears that the second-order disturbances 
radiated from the various parts of the wave train need not cancel outside it. 

3.2. Force on a barrier rejlecting the waves 

If a fixed, two-dimensional obstacle is immersed in the fluid, Benjamin’s analysis 
(1970, $3)  yields an impulse principle for the integral with respect to time, 
(P}, of the horizontal component of the force on the obstacle due to any un- 
steady disturbance. The principle states that (9) equals the change in P over 
any period of time at  the beginning and end of which the fluid at  the obstacle 
is undisturbed.? Together with the present results this suggests the simple rule 
that reflexion, by the obstacle, of a fraction h of the energy of an incident wave 
packet of impulse 4 will give 

(F} = 2 h 9 .  (17) 

For obstacles of arbitrary shape this is only a conjecture, since we have not ruled 
out the (albeit somewhat remote) possibility that second-order long waves carry- 
ing significant impulse might be generated as a result of the reflexion process. 

Equation (17), has, however, been verified by direct calculation for the simple 
limiting case of a vertical barrier which occupies (nearly) the whole height 
0 < z < H of the channel and totally reflects the wave packet ( A  = 1). The 
analysis shows that, in this case, no significant long-wave radiation occurs during 
reflexion. The solution, not reproduced here, consists of the incident wave 
packet and its image, described correct to order a2, plus the second-order re- 
sponse to their mutual interaction. The latter is found to contribute 

bo the time-averaged pressure a t  the barrier. This just cancels the other z- 
independent contribution, namely twice the last term of ( I  1 c )  -as might have 
been anticipated from the vanishing of the total momentum, ( 2 ) .  (The cancella- 
tion is a further reason for regarding the last term of (1 1 c )  as physically uninter- 
esting in this problem.) 

The only remaining contribution t o  the mean pressure at the barrier is twice 

t In contrast with the case of a steadily towed obstacle, i t  seems generally necessmy to 
exclude obstacles in contact with the boundary, apparently because (4) might then be 
violated in consequence of systematically differing values of 8 at opposite sides of such an 
obstacle. 



810 M .  E .  McIntyre 

the first term of (1 1 c ) .  Using the condition that the barrier ‘nearly ’ touches the 
boundaries, to remove the ambiguity in the pressure on the far side, we immedi- 
ately verify (17)  with h = 1. 

The writer is indebted to D. G. Andrews, IF. P. Bretherton, W. L. Jones, 0. M. 
Phillips and the referees for the paper for helpful comments on a first version. 
He also thanks St John’s College, Cambridge, for support in the form of a re- 
search fellowship, and the Institute of Meteorology, University of Stockholm, 
for hospitality during the writing of this paper. 

Appendix, The Lagrangian-mean flow and the ‘radiation stress’ con- 
cept 

To first order in a the particle displacement <(q x ,  t )  3 {c, 0, <} is defined by 
- -  

&=u, &=w, ! j -=<=o.  

US = 5. Ou = (2Ec,/pc2) cos (2mx) 

The Stokes drifts, to leading order in p, are found to be 
- 

(A 1 a )  

(Thorpe 1968, p. 612)) and 

(cE,  - ET) sin (Zmz). - P C g  

pc3m 
j$ < . v w  = - 

It is noteworthy that the Stokes-drift velocity field is divergent, on accouiit of 
the ET contribution to w”: 

aus aws ~ A C , E ,  
ax az pc3 

p-+-=- cos (2mz). 

This was first pointed out to the writer by D. G. Andrews (personal communica- 
tion). The Lagrangian-mean velocity UL is therefore also divergent, satisfying 
(A 2 ) .  Explicitly, (I  1 a, b )  plus (A 1 a, b )  gives, using ( 1 2 ) ,  

UL = U + Us = 2 ( ~  - C ; / C ~ )  (E/Pc)  cos ( Z ~ Z ) ,  

wL = W+ W s  = - pm-ly(E,/pc)sin (2mx) 

Cy = 2 C i ( C 2  - 2ccg - 2 C i ) / C 2 ( C 3  - 4Ci)I. 

(A 3a) 

(A3b) 
- 

An independent check on (A 3b)  and thus on (A 1 b)  is obtained by calculating 
direct from ( 5 )  and ( 11 d )  the Lagrangian-mean vertical displacement 

correct to order a2. This yields an expression for i5L = pi3[LL/aT = -pgaEL/8X, 
which agrees with (A3b).  

Thus it appears that in waveguide problems such as the present one, with a 
transverse length scale H 9 k-l, the effect of the waves on the Lagrangian- 
mean flow is not equivalent to a stress alone. There is also an apparent ‘mean 
mass’ source, given in this problem by the right-hand side of (A 2 ) .  One could if 
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one wished continue to define a ‘radiation stress’ in the way proposed by 
Bretherton (1971, §6.5), but this would share, with the Reynolds stress of the 
Eulerian-mean problem, the disadvantage of not representing the sole effect of the 
waves on the mean flow. 
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